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ABSTRACT 

 In this research, we propose combination of transparent object feature region to SSD 

model for eliminating the false detections from the transparent object detection research. The 

detection of transparent object such as glass in the image is recently popular in computer 

vision researches. Among the various tasks of detecting objects in images, it is not an easy 

task to detect the presence of transparent objects in the image. The detection of transparent 

objects is very difficult to perform using classical computer vision algorithms since the 

appearance of transparent objects dramatically depends on its background and illumination 

conditions. In addition to the popularity of transparent object detection, deep learning is also 

giving high performance in object detection tasks. In this research, we apply one of the 

Convolutional Neural Network called Single Shot MultiBox Detector (SSD) for transparent 

object detection task. When we detect transparent objects with the network trained with glass 

images, many false detections are included in the detection results. In order to eliminate these 

false detections, we propose transparent object feature region to be included during the 

training processes. These object feature regions are the unique regions that appear due to the 

transparent properties of the glass objects. We manually define these object feature regions 

on each transparent objects and then train together with the glass training data. By using the 

network trained with glass and glass-feature regions, the glass and glass-feature regions are 

detected from images. The glass region which contains at least one glass-feature region is 

detected as a transparent object and the glass region without any glass-feature region is 

eliminated as non-transparent object. The experimental results show that the combination of 

transparent object feature regions to the deep learning model can considerably reduce the false 

detections and give a good performance to detect transparent objects in images. 

Keywords - Transparent object detection, Deep learning, Single Shot MultiBox Detector, 

False detections, Transparent object feature region. 
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CHAPTER 1. INTRODUCTION 

Nowadays, the recognition of different kinds of objects is increasingly challenging 

the computer vision researchers. Among these challenges, the recognition of transparent 

objects has become a considerable problem in object recognition task. Transparent objects 

are very widely used in daily life and are existing in domestic environment along with other 

objects. In contrast to the detection of other opaque objects, transparent objects are hard to 

detect by regular image segmentation methods because these objects usually take the texture 

from their background and their appearances are similar to their surroundings. Therefore, to 

perform the detection of transparent object in images, the advantages of deep learning 

techniques are intended to apply in this research. 

 Previously, many of the computer vision researchers had performed the segmentation 

of transparent objects in images by considering many of the features related with the 

transparent object. Their segmentation task had based on many physical features such as the 

material properties of objects like colour similarity between the background behind the 

transparent objects and the glass covered region, texture distortion, blurring cues, highlights 

caused by reflectance, and so on [1]. Based on these properties, they defined the features of 

transparent objects and performed the detection of transparent objects. Therefore, just in 

extracting features of the transparent objects, many of the physical properties should be 

considered. And again, detecting the location of transparent object in the image was hard to 

give the exact location of the transparent object in the image. These previous works were 

only based on traditional machine learning for the purpose of segmenting transparent object 

regions in an image. Comparatively, in deep learning techniques, the useful representations 

or features are learned directly from the given training images.  

Deep learning is one of the machine learning algorithms which is structured based on 

how a human’s brain works. Like the human’s brain, deep learning techniques employ 

artificial neural networks with multiple layers which learn the features directly from the input 

data without the need for manual feature extraction. In a deep learning architecture, the first 

layer outputs a representative feature of the original input data and the successive 

intermediate layers use the output produced by the previous layer as input. The intermediate 

layer again outputs a new representative feature and then feeds to a higher level layer. Each 

level layer transforms its input data into a slightly more abstract and composite representation 
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and then passes to the next layer. In this way, the network learns multiple levels of 

representations that correspond to different levels of abstraction. Based on these multiple 

levels of representations, the final layer performs the detection of the objects.  

Deep learning techniques have been widely used in many areas such as computer 

vision, speech recognition, natural language processing, audio recognition, social network 

filtering, machine translation, bioinformatics, drug design and board game programs which 

give results comparable to and sometimes exceed the human performance [2]. For object 

detection using deep learning, models are usually trained by using a large amount of labelled 

data from popular image datasets such as PASCAL VOC [3], COCO [4] and ImageNet 

ILSVRC dataset [5]. These datasets are released for object detection challenges.  

With deep learning methods, object detection is performed by predicting the location 

of the object along with the class of the object. For predicting the location of the object, 

multiple windows of fixed sizes are applied over the input image. Each of these sliding 

windows are then passed to an image classifier to predict the class of the object in that 

window. In order to detect objects of different scales and different sizes, windows with 

different aspect ratios are used for sliding over the image. By this way, the detection of 

objects in an image is resulted with the predicting score of the object class and 4 variables 

(xmin, ymin, xmax and ymax) which represents the location of the object.  

 

 

 

 

 

 

Figure 1. Machine Learning Object detection vs. Deep Learning Object Detection [6] 

 In this research, we use Convolutional Neural Network (CNN or ConvNet) for the 

detection of transparent object. With CNN, there is no need to do manual feature extraction 

which means the convolution layers of CNN extract the object features directly from the input 

image. Therefore, the features of transparent objects do not need to be considered during the 
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detection process. An illustration of machine learning object detection vs. deep learning 

object detection is shown in Figure 1. CNN learns to detect different features in layer-by-

layer where the lowest layer starts with the simplest shapes such as edges of the transparent 

object and then simple shapes, complex shapes, more complex shapes and finally the shapes 

of the target transparent objects. By using the learned features of the transparent objects, a 

deep learning model that can detect transparent objects in images is created.  

 Among various deep learning models, we apply Single Shot Multibox Detector (SSD) 

[7] in this research. SSD is a state-of-the-art object detection model which uses a single net 

for both object localization and classification. SSD uses VGG-16 [12] with discarded fully 

connected layers as its base architecture. The architecture is added by a set of extra feature 

layers to be able to extract features of different scales and different sizes. Since SSD makes 

predictions for object detections based on feature maps produced at different stages of the 

convolutional neural network, it gives the accurate detection results in the detection of 

transparent objects. 

 Beyond the accurate detection of transparent object by SSD, one problem still exists 

when we detect non-transparent objects of the same shape as the transparent objects. If the 

detection is performed on such kind of non-transparent objects, SSD also classifies the non-

transparent objects as the transparent objects. These false detection leads to a decrement in 

precision when detecting transparent objects from images. Although negative training 

examples of non-transparent objects can be used to solve the false detections, it is difficult to 

find several kinds of non-transparent objects which have the same shape as the transparent 

objects. Therefore, instead of trying to find each kind of non-transparent objects which have 

the same shape as the transparent objects, we need to find a way to concentrate only on the 

available transparent object data and also to be able to eliminate the false detection results as 

much as possible. 

 We propose a new transparent object detection approach which is based on the feature 

regions of transparent objects. We define some regions of the transparent objects as the 

important feature regions of transparent objects. These regions are the distinct regions which 

can appear only in the transparent objects due to their property of transparency. These regions 

are taken as the object feature regions and are included when training the neural network. 

The network then detects the transparent object regions and the object feature regions from 
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the input image. A glass region which contains at least one glass feature region is detected as 

a transparent object and the regions which do not contain any glass feature region are not 

detected as transparent objects. The experimental results show that the combination of 

transparent object feature regions to the convolutional neural network dramatically eliminates 

the false detections the transparent objects. 

 This thesis is composed of six chapters. This chapter provides an introduction of the 

research and a brief explanation of the objective of the research. Chapter 2 explains the 

theoretical background of deep learning and convolutional neural network. Chapter 3 

includes related works to the detection of transparent objects, problem statements and then 

the proposed approach of the research. Chapter 4 gives details of our proposed method. 

Chapter 5 describes the conducted experiments, results and discussion on the research. 

Chapter 6 concludes this thesis. 
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CHAPTER 2. THEORETICAL BACKGROUND 

2.1 Deep Learning and Object Detection 

Deep learning is an advanced form of machine learning. In machine learning, the 

relevant features of objects need to be manually extracted at the beginning of the object 

detection process in order to create a model that can classify the object classes in the images. 

Therefore, we need to manually choose which features are relevant to the object that we want 

to detect and also need to choose the appropriate classifier for the object classification. With 

deep learning, a set of powerful algorithms are used to automatically extract the features to 

represent the data. In other words, the features that are relevant to the object that we want to 

detect are not pretrained and instead, these features are learned while training the network 

with a large set of training images. Feature extraction is done automatically in deep learning 

methods. That is why deep learning models are now giving a high accuracy and performance 

in many computer vision tasks such as visual object recognition and object detection. 

 When deep learning is applied in the object detection tasks, a large amount of labeled 

data need be prepared as training data. In order to perform automatic feature learning, deep 

learning uses the backpropagation algorithm which makes adaptation of the internal 

parameters of the deep neural networks to the training data. With a huge amount of training 

data, the internal parameters are changed more frequently so that the more accurate 

representation of the data are computed in each layer. 

 Another requirement when applying deep learning in object detection is the 

substantial computing power. Since deep learning uses huge amount of image data, it needs 

to perform thousands of matrix multiplications and other operations on images. The parallel 

architecture provided in high performance GPUs can make deep learning to be more efficient 

by parallelizing matrix and other processes and speed up the training processes.  

 The term “deep” in deep learning refers to the number of hidden layers which are 

included in the neural networks.  Although the traditional neural networks have only two or 

three hidden layers, deep neural networks may contain tens or even hundreds of hidden layers 

in order to learn the representations of data with multiple levels of abstraction. 
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The most popular deep learning architectures are: 

 Convolutional Neural Networks 

 Deep Belief Networks 

 Deep Auto-Encoders and 

 Recurrent Neural Networks (or Long-Short Term Memory) 

In this research, the deep learning architecture used for transparent object detection is the 

Convolutional Neural Network (CNN). The application of deep learning in object detection 

is shown in Figure 2. 

 

 

 

 

 

 

 

Figure 2. Object Detection using Deep Learning [8] 
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2.2 Transparent Object and its Characteristics 

 Transparent objects are the objects that allow the light to pass through them 

completely [9]. An example of transparent objects is the glass which can be easily found in 

our environment. Since the light can pass through the transparent objects, the objects inside 

or on the other side of these objects can be clearly seen by the human eyes. Generally, 

transparent objects are said to be colorless and they just only take the color of materials which 

are inside or behind them. Compared to transparent objects, non-transparent or opaque 

objects do not allow the light to pass through them and nothing can be seen through them.  

 The most obvious physical properties of objects are the color, texture and the 

reflectance of the light and these material features are usually used for describing different 

classes of the objects. For the detection of opaque objects, the color or texture property of the 

object is locally sufficient. However, transparent objects do not have their own color and 

texture because their appearance always varies according to the scene behind them. 

Therefore, some special properties have been defined for the transparent objects as below [1]. 

 Color similarity: the glass and background usually have the similar color due to the 

property of transparency. 

 Highlights: specularities appear on the glass region because some lights are reflected 

from the glass surface. 

 Blurring: the texture of the glass region is a blurred version of its background. 

 Overlay consistency: the intensity distribution on a glass region is constrained by the 

intensity distribution on its background. 

 Texture distortion: refraction in transparent objects causes a slight difference in the 

texture of the glass region than the others. 

These properties had been used as the features for segmenting transparent objects in 

previous work [1]. In this research, we propose the transparent object feature regions caused 

by the property of transparency and train neural network with these feature regions for 

reducing the false detection of the transparent object in images. 
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2.3 Convolutional Neural Network 

 A CNN is composed by a sequence of convolution layers. Each layer filter or 

convolve the inputs to get useful features of the data. In order to extract the most important 

features of the data, the parameters of the convolution layers, also known as filters or kernel, 

are adjusted automatically by learning during the training process. A CNN architecture 

generally consists of three main types of layers: convolution layer, pooling layer and fully-

connected (FC) Layer. Figure 3 shows a common architecture of convolutional neural 

network. 

 

 

 

 

 

Figure 3. Common Architecture of Convolutional Neural Network [6] 

 The core of the convolutional neural network is the Conv layer and most of the 

computation are performed in these layers. The parameters of Conv layer are a set of 

learnable filters which are typically smaller width and height than the input image and have 

the same depth as the input image. As an example, a 5x5x3 filter (i.e. 5 pixels width, 5 pixels 

height and depth 3 for RGB colour channels) may be used in the first Conv layer. The filters 

are to slide or convolute over the entire input image and the dot product of the filter and the 

input is computed. During passing the filter, the visual features such as the edge of the object 

are learned. Starting from the lowest level feature such as edges, the Conv layers eventually 

learn the filters that activate the highest level feature such as the shape of the target object at 

the final layer of the network.  

 ReLU layers in the CNN architecture are the Rectified Linear Units. After computing 

linear operations such as element wise multiplications and summations at the Conv layers, a 

nonlinear function is applied at the ReLU layers. Although tanh and sigmoid functions were 

used as the nonlinear functions in the previous architectures, the CNN architecture mostly 

uses the function of f(x) = max (0, x) as the nonlinear function of the ReLU layer. According 

to this function, it can be said that ReLU layer changes all the negative activations to 0.  
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 Pooling layers are another important layers in the CNN architectures. The purpose of 

the pooling layers is to perform non-linear downsampling. Among several non-linear 

functions, maximum pooling is the most common function used for pooling. With max 

pooling, the input image is firstly partitioned into a set of non-overlapping rectangles, and 

then the maximum value is output as the representation of each sub-region. After max pooling, 

the size of each representation is dramatically reduced and the amount of computation is also 

reduced. Therefore, pooling layers are important layers for controlling the overfitting caused 

by the Conv layers and are usually put between the successive Conv layers in the CNN 

architecture. 

 After several Conv and max pooling layers, the fully connected layers are inserted at 

the end of the CNN architecture. In the fully connected layers, the input is the activation maps 

of high level feature from the final Conv layers and the output is the possible classes and the 

probabilities of each class. Here, the possible classes are predicted by determining which high 

level features are the most strongly correlate to which particular class. For example, when a 

prediction is performed on an image of bird, there will be the highest activation in the wings 

or beak regions of the bird. Those features are particular for the bird so that the prediction 

will output the highest probability in the bird class.  

 The structure of the architecture varies according to the types of CNN architectures. 

The most popular convolutional neural network architectures are AlexNet [10], ZF Net [11], 

VGG Net [12], GoogLeNet [13], Microsoft ResNet [14] and R-CNNs [15]. Among these 

architectures, VGG Net, shown in Figure 4, is the CNN architecture used as the base network 

of the Single Shot Multibox Detector [7] deep model for detecting transparent objects.  

 

 

 

 

 

Figure 4. VGG-16 Architecture [16] 
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2.4 Single Shot MultiBox Detector (SSD) 

 Single Shot MultiBox Detector (SSD) [7] is a popular deep learning model which 

achieves not only faster detection result than the current state-of-the-art Faster R-CNN [17] 

but also higher accuracy than the YOLO [18] detection algorithm. SSD eliminates the 

proposal extraction stage and feature resampling stage from its architecture so that the 

detection is speeded up than the Faster R-CNN model. SSD makes predictions for detection 

of the objects based on features maps produced at different stages of the convolutional neural 

network. As a result, it can handle the detection of different scaled objects and produces a 

higher accurate detection result over the previous YOLO model. Therefore, SSD is providing 

a balance between speed and accuracy in the object detections. 

 SSD uses small convolution filters to predict object category scores and bounding 

box offsets and separate predictor (filters) to detect objects at different aspect ratios. 

Moreover, SSD can perform to achieve high detection accuracy by applying these filters to 

multiple feature maps and predicting at different scales. The main idea that SSD has 

introduced is to predict the object category scores and the location offsets for a fixed set of 

default bounding boxes by just applying small convolutional filters to feature maps. Due to 

its designated flow, SSD can perform end-to-end training and predictions of the object label 

and bonding boxes in a single pass. That is why it terms single shot. Since it also takes the 

feature maps from the layers which are closer to the original image, SSD can even perform 

the detection of objects in low resolution images. Therefore, SSD gives the accurate detection 

results on objects of different scales and different sizes and faster detection by single pass 

detection. The architecture of the SSD from [7] is given in Figure 5. 

 

 

 

 

 

Figure 5. The Architecture of Single Shot Multibox Detector [7] 

 As shown in the above figure, SSD architecture uses VGG-16 with discarded fully 

connected layers as its base network. In place of discarded fully connected layers, a set of 
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extra feature layers (conv6 and later) are added in the architecture. Because of these added 

layers, it enables to extract features at multiple scales and resolutions. 

During training, SSD only takes an input image and ground truth boxes of each object 

in the image. The input image is convoluted through layer-by-layer and output as several 

feature maps with different scales (e.g. 8x8 or 4x4 feature maps). With a larger feature map 

such as 8x8 feature map, small objects can be readily detected because the scale of each cell 

is smaller. With a smaller feature map such as 4x4 feature map, each cell covers a larger 

region of the image, thus enabling them to detect larger objects. On each scale of feature 

maps, a small set of default boxes (e.g. a set of 4 default boxes) with different aspect ratios 

(i.e. 2:1, 1:2 or 1:1) are slide at each location. Each box is defined with 4 offset values that 

is, the coordinates of the centre, the width and the height. For each default box, the prediction 

of these location offsets and the probabilities corresponding to the confidence over each class 

of object is performed simultaneously. These predicted boxes are matched to the ground truth 

boxes given at the start of training and then the best match box is labeled as positive and the 

others as negative. The framework of SSD [7] is shown in the following Figure 6. 

 

 

 

 

 

 

Figure 6. SSD Framework. [7] (a) Input image with ground truth bounding boxes of the cat 

and dog. (b) and (c) A small set of default boxes applied to feature maps of different scales 

(8x8 and 4x4). During training, the bounding boxes are matched to the ground truth boxes 

until we find the best match between them (blue boxes in (b) for cats and red box in (c) for 

dog). 
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2.4.1 Training Phase 

 Unlike the previous detectors that use region proposals, the ground truth information 

of the predicting object needs to be given since the training was started. After giving the 

images and ground truth box data, SSD applies the loss function and back propagation end-

to-end to the network. During training, a lot of mechanisms are required to complete the 

whole training process. These mechanisms include choosing the suitable scales and aspect 

ratios of default boxes for performing scale variant detections, hard negative mining for 

excluding some default boxes and data augmentation for robustness to various sizes of the 

object in the input.  

 As the training objective, SSD is aimed to handle multiple categories of the object. 

Like the usual deep learning models, the goal of the training process is to find the parameter 

values that would optimize the training loss. Here, the overall training loss is the weighted 

sum of the localization loss (loc) and the confidence loss (conf): 

𝐿(𝑥, 𝑐, 𝑙, 𝑔) =  
1

𝑁
  (𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) +  𝛼𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔))                                (1) 

where 𝑥 is an indicator for matching default box and ground-truth box. c is the confidence 

over classes. 𝑙 is the predicted bounding box and 𝑔 is the ground-truth box. α is the weight 

term. N is the number of matched default boxes. If N = 0, the loss is set to 0. 

 The localization loss (loc) is the Smooth L1 loss which is measured by how far the 

bounding boxes predicted by the network ( 𝑙 ) and the ground truth boxes (𝑔 ). Since 4 

parameters (cx, cy, w, h) compose to define the offsets of bounding box, the location loss of 

the network becomes: 

𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) =  ∑ ∑ 𝑥𝑖𝑗
𝑘   𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑙𝑖

𝑚 − �̂�𝑗
𝑚)

𝑚{𝑐𝑥,𝑐𝑦,𝑤,ℎ}

𝑁

𝑖𝑃𝑜𝑠

                          (2) 

�̂�𝑗
𝑐𝑥 = (𝑔𝑗

𝑐𝑥 −  𝑑𝑖
𝑐𝑥)/ 𝑑𝑖

𝑤               �̂�𝑗
𝑐𝑦

= (𝑔𝑗
𝑐𝑦

− 𝑑𝑖
𝑐𝑦

)/ 𝑑𝑖
ℎ  

�̂�𝑗
𝑤 = 𝑙𝑜𝑔 (

𝑔𝑗
𝑤

𝑑𝑖
𝑤)            �̂�𝑗

ℎ = 𝑙𝑜𝑔 (
𝑔𝑗

ℎ

𝑑𝑖
ℎ) 
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where d is the default bounding box, i means ith position of bounding boxes and j means jth 

ground-truth box. 

The confidence loss (conf) is the softmax loss which is measured by how much the 

network has confidence (c) over the objectness of the predicted bounding box. 

𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) = − ∑ 𝑥𝑖𝑗
𝑝 log(�̂�𝑖

𝑝)  −  ∑ log(�̂�𝑖
0)

𝑖𝑁𝑒𝑔

       𝑤ℎ𝑒𝑟𝑒  

𝑁

𝑖𝑃𝑜𝑠

�̂�𝑖
𝑝 =  

exp(𝑐𝑖
𝑝)

∑ exp(𝑐𝑖
𝑝)𝑝

    (3) 

and the weight term α is set to 1 in this thesis. 

 As one important mechanism, the default bounding boxes are carefully chosen to be 

at different dimensions and aspect ratios. Assuming m feature maps are used for detection, 

the scale of the default boxes is computed for each feature map by: 

𝑠𝑘 =  𝑠𝑚𝑖𝑛 + 
𝑠𝑚𝑎𝑥 −  𝑠𝑚𝑖𝑛

𝑚 − 1
 (𝑘 − 1),      𝑘 ∈ [1, 𝑚]                                (4) 

where the value 𝑠𝑚𝑖𝑛 is set to 0.2 for the lowest layer, 𝑠𝑚𝑎𝑥 is set to 0.9 for the highest layer 

and the other inner layers are set to values that are periodically spaced.  

 The aspect ratios are then defined by 𝑎𝑟 and set 𝑎𝑟  {1, 2, 3, 
1

2
,

1

3
}. After that, the 

size of each default box is computed by: 

𝑤𝑘
𝑎 =  𝑠𝑘√𝑎𝑟         𝑎𝑛𝑑          ℎ𝑘

𝑎 =  𝑠𝑘√𝑎𝑟                                        (5) 

where w is the width of the default box and h is the height of the default box. 

 With chosen default bounding boxes, the prediction is made at each location of the 

feature maps. Each default boxes are matched against the ground truth boxes in order to select 

the most corresponding boxes to these ground truth boxes. Here, the matching strategy is to 

select the default boxes which have Intersection over Union (IoU) higher than a threshold 0.5 

with any ground truth box. These selected boxes become the positive predictions and the 

other boxes becomes the negative predictions. 

 When selecting the bounding boxes with IoU higher than 0.5, the larger number of 

bounding boxes will have IoU lower than 0.5 and therefore will be denoted as negative 

predictions. A mechanism, called hard negative mining, is added to control the problem of 

larger amount of negative predictions over positive predictions. With hard negative mining, 
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the ratio of negative to positive examples is set to be 3:1 and only a smaller number of 

negative examples are used for training. 

 Data augmentation is another mechanism added to deal with various object sizes and 

shapes in the input. One option is to use each training image as its original image. The next 

option is to sample the original image with patches at different IoU ratios (e.g. 0.1, 0.3, 0.5 

0.7, or 0.9) or random patches are used. By using one of these options, additional training 

data are generated so that the model becomes more robust to any size and shape of objects in 

the training images. 
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2.4.2 Detection Phase  

 The detection in SSD is different from the early deep learning models which use two 

different nets: Region Proposal Net (RPN) for extracting Region of Interest (RoI) and a 

separate classifier for object scoring and localization. Instead of using two separate nets, SSD 

uses a single net which predicts the object class and bounding box offsets simultaneously. In 

order to build up a single net for the whole detection process, extra feature layers are added 

at the end of the base network (VGG-16 with discarded fc layers). The base network is for 

high quality image classification and the added feature layers for predicting scale variant 

bounding boxes and their confidences.  

 There are three key elements used in the detection phase of SSD; multi-scale feature 

maps, convolutional predictors and default boxes of different aspect ratios. Once the image 

passes the convolution layers, they are resulted as the feature maps that represents the 

dominant features of the input image. The auxiliary feature layers added by SSD models 

decrease in size progressively, thereby producing feature maps that vary in scales and 

resolutions. By using multiple feature maps from different convolution layers, SSD promises 

the accurate detection on both of the large and small object in images. 

 After the feature maps output from the convolution layers, a fixed set of different 

convolution filters, called convolution predictors, are applied on different feature maps. 

When the filter is applied at each location of the feature map, it outputs the class score and 

the location offset related to the default box coordinates. 

 The default bounding boxes applied to feature maps are configured to come with 

different aspect ratios as mentioned in the training phase. Each default box is then applied at 

each feature map cell and predict the 4 offset parameters and object score of that default box 

region. If the number of default boxes used to predict c class scores and 4 location offsets is 

k, a m x n feature map will produce (c + 4)kmn outputs.  

 Finally, Non-Maximum Suppression (NMS) mechanism is used to prune the 

bounding boxes which have a very low likelihood in prediction. A small confidence loss 

threshold (e.g. 0.01) is firstly used to filter out unlikely predicted boxes. Then the boxes with 

IoU lower than 0.45 are discarded from the remaining boxes. With non-maximum 

suppression, only the topmost predictions are retained by the network by eliminating the 

irrelevant predictions. 
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CHAPTER 3.         TRANSPARENT OBJECT DETECTION AND 

FALSE DETECTION PROBLEM 

3.1 Related Works 

The detection of transparent objects had been a difficult work because of their lack of 

own appearance. The research on detection of transparent objects has been increasingly 

focused along with the development of intelligent domestic service robotics. In the domestic 

scenes, transparent objects are located among the other objects. For the detection of these 

transparent objects, Osadchy et al. [19] applied the specular highlights feature which makes 

glass objects different from the others. However, there was a requirement to have a light 

source. McHenry et al. [1] considered a number of features such as color similarity, blurring, 

overlay consistency and texture distortion in addition to highlights for transparent object 

detection purpose. 

Fritz et al. [20] use an additive model of latent factors, method of a combination of 

SIFT and Latent Dirichlet Allocation (LDA) on a dataset of 4 transparent objects to generate 

transparent local patch appearance. The algorithm provides a useful result in the detection of 

transparent objects in different backgrounds. 

Both of the detection and pose estimation of transparent objects have been proposed 

by Phillips et al. [21] and Lysenkov et al. [22] with the use of laser range finders and stereo 

and Kinect depth sensor, respectively. Phillips et al. [21] use inverse perspective mapping 

with the assumption of two views of a test scene and placing objects on a support plane. In 

[22], the fact that the Kinect sensor fails to estimate depth on specular or transparent surfaces 

is used to segment transparent objects from the images. And then, they perform 6 degree of 

freedom (6DOF) pose estimation and recognition of transparent objects. However, both of 

these approaches cannot handle overlapping transparent objects. So, Lysenkov et al. [23] 

propose an improved method to deal with the overlapped transparent objects.  

As an interesting method of the segmentation of transparent object from a light-field 

image, Xu et al. [24] propose TransCut method using light field linearity, occlusion detector 

and graph-cut for pixel labeling. Unlike conventional methods which usually rely on the color 
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similarity and highlight information, they use the overlay consistency and texture distortion 

properties for the segmentation of transparent object region in a light-field image. 

In recent years, the traditional object recognition tasks have been shifted to the deep 

learning object recognition tasks. Along with the powerful and efficient results, deep neural 

network is also applied to recognize transparent objects. Lai et al. [25] use Region with 

Convolutional Neural Network (R-CNN) to recognize the transparent object in color image. 

R-CNN technique uses selective search [26] to extract the interested region proposals [15], 

and the efficiency of the selective search algorithm is improved in [25] by considering the 

highlight and color similarity features of the transparent objects in order to remove some 

region proposals that are not transparent. As an interesting application of later deep neural 

network, we use Single Shot Multibox Detector (SSD) [7] to detect transparent objects in 

images. 
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3.2 False Detection Problem 

 Basically, SSD can perform the detection of all transparent objects accurately. But, 

one problem found in SSD is that if the detection is performed on the non-transparent objects 

of the same shape as the transparent objects, SSD also classifies the non-transparent objects 

as the transparent objects. Although the detection of transparent objects using SSD gives very 

accurate results on detecting transparent objects, some false detections are appeared in the 

results when non-transparent objects of similar shapes are detected. The false detections on 

two non-transparent objects of similar shape to transparent objects are shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The false detection results of two non-transparent objects: paper cup with similar 

shape to water glass and coffee mug with similar shape to beer glass where class 1 is defined 

for glass class 

 This false detection problem appears because the appearance of the transparent 

objects is very simple and also they usually have no their own colour. In case of other objects, 

they have their unique features which are very distinct from the others. For instance, in case 

of bird, no other thing cannot have its distinct feature like wings. As for the transparent 
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objects, there is no special appearance and also the definite colour that the network can see 

during training. 

 There are two possible ways to solve this false detection problem. The first way is to 

train the network with the negative training examples which contains the non-transparent 

objects which have the similar shapes to transparent objects [27]. Although this is the regular 

way to solve false detection problem, it is very difficult to find several kinds of non-

transparent objects which have the same shape as the transparent objects. 

 We propose an alternative way to eliminate the false detections in transparent object 

detection. In this approach, we absolutely do not find and add any kind of non-transparent 

objects of similar shape. Instead, the useful information is just only found from the available 

transparent object data for solving the false detection problem. 
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3.3 Transparent Object Feature Region for Eliminating False Detection 

3.3.1 Transparency 

 Transparent objects are special objects come with different visual and physical feature 

compared to other regular object. One of its special properties is transparency [9]; the 

property that the rays of light passing through the glass medium so that the objects inside or 

beyond can be distinctly seen. Figure 8 visualizes the transparency property of some glass 

objects and compares to the same shape non-transparent objects which do not have 

transparency. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Transparency and non-transparency in glass and non-glass objects 

 Due to transparency in glass objects, the water and beer level can visually be seen 

through the glass body as shown in Figure 8 (a) and (b). Whereas, the contents inside the 

paper cup (c) and coffee mug (d) cannot be seen through because these non-glass objects do 

not have the transparency property. Based on this visual difference between them, we define 

the object feature regions on each transparent object. These feature regions are then included 

during training the convolutional neural network and discard false detections in the 

transparent object detection.  

Water and beer level that 

can be seen through the 

glass body 

No transparency through 

paper cup and coffee mug 

body 

(a) (b) 

(c) (d) 
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3.3.2 Transparent Object Feature Region 

 Transparent feature regions proposed in this system are varied according to each type 

of transparent objects. These regions are the most distinct parts that appear due to the 

transparency in the glass objects. Four types of transparent objects are used to perform the 

detection of transparent objects in this thesis. They are beaker, beer glass, water glass and 

wine glass, and these glass objects are common to be found in our environment. The feature 

regions are defined differently on each glass class as shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Object Feature Regions in different transparent objects 
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(f) 

(c) (d) 
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 As shown in Figure 9, the transparent object features are defined at different regions 

of the glass. If the glass is empty like (a), (c) and (e), the bottom of the glass can be seen and 

that region is defined as the object feature regions. If the glass is filled with water or some 

liquid like (b), (d), (f) and (g), the region above the liquid level is taken as the glass feature 

region. In the case of wine glass (g), the feature region is defined to be the leg of wine glass 

if it is not filled with any liquid.  

 We create at least one feature region on each of the transparent objects in the training 

images. Therefore, when training the network, not only the whole glass but also the glass-

feature regions are learned from each transparent objects. Since these feature regions are 

unique to transparent objects so that they cannot be detected in the non-transparent object of 

the same shape. When the detection is performed, the regions that do not contain any glass-

feature region are regarded as non-glass objects, thereby eliminating the falsely detected glass 

regions from the result.  
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CHAPTER 4.         OBJECT FEATURE REGION 

4.1 Transparent Object Detection Using SSD 

 In this research, we apply SSD [7] as the convolutional neural network for detection 

of transparent objects in images. SSD uses VGG-16 [12] network which is pre-trained on 

large scale ImageNet dataset [5]. Pre-trained models are the models which have been trained 

with the general objects of different classes. With this pre-trained network, transfer learning 

is conducted for detection of transparent object. The concept of transfer learning is that the 

pre-trained model which has been learned the weight from other datasets are used instead of 

training the network from scratch with random initialization. When the pre-trained model is 

trained with the transparent object images, the network becomes a specific model for 

detection of the transparent object. Here, the network pre-trained on the ImageNet data is 

used because both the pre-trained network and the proposed network are intended for object 

detection. 

For the detection of transparent object, the training dataset is taken from the ImageNet 

ILSVRC dataset. The ILSVRC dataset provides some classes related with transparent objects 

and we use 4 classes: 

 Beaker 

 Beer glass 

 Water glass and 

 Wine glass 

For each class, the images and annotation files are given. The annotation files are the files 

which are related to each image and describe the location of objects in the image along with 

their labels. For some class such as water glass, the annotation files are not readily given and 

we create them manually for using in training the neural network. An example of annotated 

image provided by the ILSVRC dataset is shown in Figure 10. 
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Figure 10. Image with annotated bounding box 

 We prepared a total of 1,568 images and their annotation files from beaker, beer glass 

and water glass classes for training the convolutional neural network. Since each image 

contains one or more transparent objects, the number of bounding boxes for the transparent 

objects is 1,888 boxes from all classes of the transparent objects. 

The convolutional neural network is then trained with the images and bounding box 

annotation files provided by the ILSVRC dataset. Using the trained network, transparent 

objects are detected from the images. In the detection output of SSD, the position of the 

detected objects is shown with the bounding boxes and, for each bounding box, the class label 

and the score for the class are described. In this system, we define the class label 1 for the 

transparent objects. Since the score of the detection is the probability of how much the 

detected region has the same features as the transparent objects, it is described by the value 

between 0 and 1. Some of the detection results of transparent objects in images are shown in 

Figure 11. 

       

Figure 11. The detection results of transparent objects in images where class 1 represents the 

label of glass object 
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 Although the detection of transparent objects from images which contain only the 

transparent objects, some of the false detections appear when the network is tested on the 

images which contain non-transparent objects of the same shape as transparent objects. These 

false detections can degrade the performance of transparent objects detection. Therefore, the 

transparent object feature region is proposed in this research and deal with the false detections. 
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4.2 Training with Transparent Object Feature Region 

For our proposed object feature regions in transparent objects, we created additional 

bounding boxes on transparent objects as shown in Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Training images annotated with both glass region (green box) and glass-feature 

region (yellow box) for each transparent object class: beaker, beer glass, water glass, and 

wine glass. Some glass-feature regions are defined at the bottom side of the glass object (a), 

(c), (e) and lower yellow box in (g). Some glass-feature regions are defined at the top side of 

the glass object (b), (d), (f) and upper yellow box in (g). 

(a) 

(f) 

(c) (d) 

(e) 

(b) 

(g) 
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 When training the network, different labels are used: class 1 for glass and class 2 for 

glass-feature regions. After training the network with the proposed data, the network is tested 

on the same images and the results are output as shown in Figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. The detection result after training the network with glass and glass-feature region 

data. The label class 1 represents the glass and class 2 represents the glass-feature. 

 As can be seen in the final detection results, the glass-feature regions are only detected 

in the transparent objects and they are not detected in the non-transparent objects. This is the 

expected output that we propose to eliminate the false detections from the detection results. 

The glass regions which do not contain any glass region are regarded as the non-

transparent objects and eliminate these regions from the detection results. Therefore, the 

paper cup in Figure 13 (b) and the coffee mug in (d) are not detected as the transparent object 

because they do not contain any glass-feature region. By this way, the false detections are 

dramatically decreased in the detection results and the precision in the detection of 

transparent objects has been increased. 
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CHAPTER 5.         EXPERIMENTATION AND PERFORMANCE 

EVALUATION  

5.1 Performance Evaluation 

5.1.1  Training Data 

 For training the network, the dataset is taken from ImageNet ILSVRC dataset [5]. 

Since ImageNet dataset does not provide annotation files for some training images, we 

manually created the annotation files for training the network. The number of images and 

annotated bounding boxes used in our experiments are shown in Table 1. 

Table 1. The number of annotated bounding boxes in each class of training images. 

Object Classes Num. of 

Images 

Num. of object 

bounding boxes 

Num. of glass-feature 

bounding boxes 

Transparent 

Objects 

Beaker 411 541 541 

Beer glass 345 379 407 

Water glass 282 302 319 

Wine glass 530 666 666 

Total 1,568 1,888 1,933 

Non-

transparent 

Objects 

Paper cup 500 648 - 

Coffee mug 200 230 - 

Coffee cup 200 223 - 

Total 900 1,101 - 

Negative 

training objects 

Bicycle 138 158 - 

Car 150 168 - 

Airplane 150 168 - 

Child 85 94 - 

Cat 163 168 - 

Dog 150 162 - 

Table 150 156 - 

Chair 150 183 - 

Clock 150 153 - 

Total 1,286 1,410 - 
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 In this experimnets, we use the programs provided at [28]. During training, we use 

VGG_ILSVRC_layers_fc_reduced.caffemodel [29] and train the network at a maximum 

iteration of 120,000. Other training parameters are set to default values. 
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5.1.2  Testing Data 

 For performance evaluation of the detection results, a set of 400 testing images which 

contains 202 images of transparent object and 198 images of non-transparent object are used. 

All of these testing images are images which are not used during training the network. For 

each of these test images, the ground-truth bounding boxes, in other words, the true locations 

of the objects are created to compared with the bounding boxes predicted by the trained 

network. An example of ground-truth bounding box and predicted bounding box is shown in 

Figure 14.  

 

 

 

 

 

 

Figure 14. Ground-truth bounding box and predicted bounding box over the detected object 

 The number of images and ground-truth bounding boxes in each class of the testing 

images are described in Table. 2. 

Table 2. The number of ground-truth bounding boxes in each class of testing images. 

Object Classes Num. of Images 
Num. of annotated 

bounding boxes 

Transparent Objects 

Beaker 45 109 

Beer glass 52 107 

Water glass 66 97 

Wine glass 39 94 

Total 202 407 

Non-transparent 

Objects 

Paper cup 52 162 

Coffee mug 74 129 

Coffee cup 72 116 

Total 198 407 
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5.1.3 Calculating TP and FP Using IoU 

Using the ground-truth bounding boxes and the predicted bounding boxes, we 

evaluate how precisely the network can detect the transparent objects in images. Intersection 

over Union (IoU), also called Jaccard Overlap index [30], is calculated for each detection. 

IoU  =  
𝐴 ∩ 𝐵 (𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝)

𝐴 ∪ 𝐵 (𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛)
                                       (6) 

In the above equation, A represents the area of the ground-truth box and B represents the area 

of the bounding box predicted by the network. Then, the IoU of each detection is calculated 

by dividing the overlap area of A and B by the union of the area of A and B. The calculations 

of IoU between ground-truth bounding box and different predicted bounding boxes are shown 

in Figure 15. 

 

 

 

 

 

 

 

Figure 15. Different IoU calculated over the predicted bounding box and the ground-truth 

bounding box [28]: (a) Poor detection, (b) Good detection, and (c) Excellent detection 

 

The higher IoU value means the more accurate the network can detect the object 

regions and the lower IoU value means the poor detection. The IoU threshold value of 0.5 is 

used in our experiments for precise detection of the transparent objects. 

 Then the true positive (TP) and false positive (FP) are calculated. If the IoU between 

the predicted bounding box and ground truth bounding box is greater than or equal to 0.5, the 

detected region is defined as a TP detection and if the IoU is lower than 0.5, it is assumed to 

be a FP detection.  

 

  

 

IoU < 0.5 IoU > 0.5 IoU = 1.0 

(b) (a) (c) 
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5.1.4 Precision, Recall and F-measure 

 Precision is the measurement of how accurately the network can make predictions of 

the objects. In other word, it describes the percentage of the true detections over the whole 

detection result.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                      (7) 

where, TP = Number of True Positive (Detection with IoU ≥ 0.5), FP = Number of False 

Positive (Detection with IoU < 0.5). 

 Recall is the measurement of how many true detections that the network can predict. 

In other word, it calculates the percentage of predicted true detections over the ground-truth 

detections. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                         (8) 

where, FN = Number of False Negative (Not detected ground-truth) 

 The precision and recall are inversely related so that if the precision gets higher, there 

will be some decrement in recall and if the recall gets higher, there will be a decline in 

precision. Therefore, we need to balance the precision and recall by trying to get a network 

that finds only relevant objects and detects all ground-truth objects. 

 F-measure (also called F1 score or F-score) is the harmonic mean of the precision and 

recall. The value of F-measure becomes the highest (i.e., 1) if there is a best balance between 

precision and recall, and the value decreases as the balance between precision and recall is 

lower. F-measure is calculated by the following formula: 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                          (9) 
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5.1.5 Average Precision (AP) and mean Average Precision (mAP) 

 Average Precision (AP) is different from the precision calculated by the ratio of true 

detections and total detections. For each detection, the network also outputs the predicting 

score for each possible class and these scores varies for each predicted bounding box. 

Moreover, there is also IoU value calculated on each prediction. The best detection result is 

the prediction with true class score 1.0 and IoU value 1.0.  

 For calculating AP, precision and recall are calculated at different class scores and 

plotted on a precision-recall curve. A good object detector results a precision-recall curve 

where the precision stays high as the recall increase. The recall is divided into r levels and 

the maximum precision values at each recall level, called interpolated precision 𝑝𝑖𝑛𝑡𝑒𝑟𝑝, is 

calculated for any recall level 𝑟′ ≥  𝑟 by: 

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) =  max
𝑟′≥ 𝑟

 𝑝(𝑟′)                                                     (9) 

 Average Precision (AP) is computed by averaging the interpolated precision at the 

different recall levels. For instance, if the recall is divided with 11 levels and each level is 

separated by 0.1 interval, the AP is calculated by: 

𝐴𝑃 =  
1

11
 ∑ 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)

𝑟∈{0.0,…,1.0}

                                             (10) 

 Average Precision (AP) is calculated on each class of the object and the mean 

Average Precision (mAP) is calculated over all classes of the objects contained in the 

detection system. If the system detects N object classes, mAP is calculated by averaging the 

AP of all N object classes and defined by:  

𝑚𝐴𝑃 =  
1

𝑁
 ∑ 𝐴𝑃(𝑛)

𝑛∈𝑁

                                                      (11) 
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5.2 Network Trained with Glass and Glass-feature 

 This time, the network is trained by our proposed method. Although the false 

predictions can be also reduced by training with non-glass data, these kinds of same shape 

data may not always be available for further classes of glass classes. This proposed method 

does not depend on the availability of the same shaped non-glass data. Instead, the network 

is trained with only the available glass images by giving the glass and glass-feature regions 

in these images. During training, the glass region is learned as class 1 and glass-feature region 

as class 2. 

 After the network is trained with glass and glass-feature, the network is also tested on 

testing dataset and produce the output images as shown in Figure 16. 

 

 

 

 

 

 

 

 

 

 

Figure 16. Some detection outputs of the network trained with glass and non-glass 

 As can be seen in the detection results, some regions in the non-glass images are 

falsely detected as the glass-feature regions. Since these regions can make non-glass objects 

to be detected as glass object which contains the glass-feature region, these falsely detected 

glass-feature regions on non-glass objects are needed to be removed. Therefore, we set some 
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thresholds to glass-feature regions and the glass-feature regions whose confidence score less 

than the threshold are removed. The threshold values are from 0.0 to 0.7 and increase by 0.1. 

While increasing the threshold of glass-feature region, most of the glass-feature regions in 

the glass objects are not removed because they have a high confidence score on prediction as 

glass feature. But, the glass-feature regions in non-glass objects are predicted with low 

confidence score and, therefore, are removed when they become lower than the threshold. 

By this way, most of the falsely detected non-glass objects are eliminated and the network 

achieves a high performance in detecting transparent objects. Among different thresholds for 

the glass-feature region, threshold value of 0.3 gets the highest mAP results. 
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5.3 Comparison Methods 

 In this research, many kinds of experiment are conducted in order to compare and 

evaluate the performance with our proposed method. The network is trained with different 

training data and settings. 

5.3.1 Network Trained with Only Glass 

 For the detection of transparent objects, we firstly train the network with glass images 

annotated only on the glass regions. We use this network for comparing with the proposed 

network because the network trained with only glass is the base line network for the detection 

of transparent objects. A total of 1,568 transparent object images and its annotation files are 

used to trained the network. In this training process, image background is trained as class 

label 0 and the glass region as class 1.  

5.3.2 Network Trained with Glass and Augmented Glass Data 

 Data augmentation is a popular concept to increase the number of training data. With 

a larger training data, the network can learn more training samples so that this network could 

be one option for improving performance of the transparent objects detection. Therefore, we 

use this network trained with glass and additional augmented glass data to compare with our 

proposed method. The original glass training images are horizontally flipped and created as 

the augmented glass training images as shown in Figure 17. 

   

 

 

 

Figure 17. Original glass image and horizontal flipped glass image 

 The network is then trained with a total of 3,136 images: 1,568 original glass images 

and 1,568 augmented glass images. 
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5.3.3 Network Trained with Glass and Negative Training Data 

 To decrease the FP detections, we need to train the network to learn which are positive 

samples and which are negative samples. Since training the network with both positive and 

negative training data is another option to decrease false detections, we use this network for 

comparison.  

The negative training samples are found from the available training data. In the 

ImageNet dataset, some object classes are readily available and are given along with 

annotation files. Images from these classes are tested on the network trained with only glass 

and find the falsely detected regions. These falsely detected regions are annotated as the 

negative object class and the network is trained with glass and these negative training samples. 

The object classes that are used for creating negative training samples are: bicycle, car, 

airplane, child, cat, dog, table, chair and clock. From these 9 classes, a total of 1,269 images 

are used as the negative training data. The network is therefore trained with 1,568 glass 

images and 1,269 negative training images (Table 1). 

5.3.4 Network Trained with Glass and Non-glass 

 For reducing FP in detection results on non-transparent objects of the same shape, the 

most common method is to add those non-transparent objects in the training dataset. 

Therefore, we use this network as one comparison method of reducing false detections of the 

transparent objects. 

Although this approach is useful, it sometimes has difficulty to match which non-

glass objects have the same shape as the glass objects. In this research, we find some non-

glass classes which have the most similar shape to glass objects and included in training the 

network. The non-glass classes are: paper cup, coffee mug and coffee cup and a total of 900 

images from 3 classes are used as non-glass training examples (Table 1). Here, the glass 

classes are labels as glass and three non-glass classes are label as non-glass to train the 

network.  
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5.4 Performance Comparison of Different Training Processes 

5.4.1 TP and FP Comparison 

 In this research, a total of 5 training processes are conducted and their performance 

are calculated on precision, recall and mAP matrices. In our experiments, the score threshold 

for glass class is set to 0.5. The calculated performance of these training processes are 

described with the following tables. 

Table 3. The number of TP and FP in different training processes. 

 

 In Table 3, the number of TP and FP in different training processes are described. 

When the network is firstly trained with only glass data, its TP is 394 out of 407 ground truth 

but its FP is very larger than the TP. When the training data is increased with augmented 

glass data, both of the TP and FP have been increased. Then, the network trained with 

negative training data from 9 classes gives a result with a little bit higher TP and a less number 

of FP. But, the number of FP is still higher than the number of TP in these three processes. 

When the network is trained with non-glass of the same shape as glass objects, the FP are 

considerably decreased. But, this training process can have some limitation in the availability 

of training data in the long term. With the network trained with glass and glass-feature, the 

number of FP is reduced much lower than all other training processes without decreasing too 

much in the number of TP.  
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5.4.2 Precision and Recall Comparison 

Table 4. Precision and recall calculation in different training processes. 

 

 According to calculated data in Table 4, the recall of all training processes are not too 

much different and most of them achieve a recall rate of over 95.00 %. But, the data shows 

too much difference in precision rates. Although the network trained with glass and 

augmented glass data has the highest recall rate, its precision is too much lower than the other 

networks. The other two networks: network trained with only glass and the network trained 

with glass and negative training data achieve higher precision rates than the network trained 

with glass and augmented glass data. But, their precision rates are still lower than 50.0 % and 

may not be a reasonable precision rate. The precision rate becomes 69.05 % when the network 

is trained with glass and non-glass. In the case of network trained with glass and glass-feature 

data, the precision rates become the highest rates among all of the training processes. Even 

with the original available glass training data, the combination of transparent object feature 

in the glass detection achieves the higher precision and recall when the glass-feature threshold 

is set to 0.3. With a lower number of data used during training process, our proposed method 

shows the highest F-measure among all comparison methods. 
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5.4.3 Average Precision (AP) Comparison 

 The average precision (AP) are calculated based on precision-recall curve of the 

detection result and Figure 18 shows the precision-recall curves and AP results of different 

training processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Precision-recall curves and AP results of the network trained with (a) glass and 

glass-feature (proposed method), (b) only glass, (c) glass and augmented data, (d) glass and 

negeative training data, and, (e)(f) glass and non-glass 

(a) (b) 

(d) (c) 

(e) (f) 
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 According to precision-recall curves in Figure 18, all training processes achieves over 

73.00 % of average percision in the detection of transparent objects. When we compare the 

AP our proposed network to APs of (b), (c) and (d), our proposed method gets a higher AP 

result of over 10.00 %. Although our method has a lower AP compared to AP of (e), AP of 

our proposed network is reasonable because our method takes a less assumption of training 

data compared to the network trained with both glass and non-glass data. The AP of non-

glass of the network trained with glass and non-glass is shown in (f) because mAP calculation 

in the next step requires the AP of each class of the trained network. 
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5.4.4 mean Average Precision (mAP) Comparison 

Table 5. mean Average Precision (mAP) of different training processes. 

 

 Finally, the mAP of the networks are calculated and shown in Table 5. According to 

the mAP results, the network trained with glass and non-glass gets the highest mAP result. 

Among other networks which do not use the non-transparent object of the same shape training 

data, the network trained with glass and glass-feature outperforms the other 3 networks: the 

network trained with only glass, the network trained with augmented glass data and the 

network trained with glass and negative training samples from 9 classes. The network trained 

with glass and glass-feature achieves the second highest mAP result when the glass-feature 

threshold is set to 0.3. Comparing to the network trained with glass and non-glass, the mAP 

difference is not too much high. From the training data point of view, the network trained 

with glass and non-glass consumes much more traininig data than the network trained with 

glass and glass-feature. Therefore, the mAP result of the network trained with glass and glass-

feature can be said that it gives a considerable performance just with a small amount of 

training data. 

 To conclude the comparison between the networks, the network trained with glass 

and non-glass has the highest mAP results but it totally depends on the availability of negative 



 

43 

non-transparent data in its training process. When we compare this network with our 

proposed network trained with glass and glass-feature, our method achieves a near mAP 

performance (just 7.27 % difference) with a much lower cost in selecting training data. 

Therefore, from training data assumption and precsion-recall point of view, our proposed 

method has a higher performance than the network trained with glass and non-glass. Our 

proposed method gets a higher mAP and precision results than the other three methods and 

achieves the highest F-measure among all comparison methods.  
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CHAPTER 6.         CONCLUSION 

 In this research, we propose transparent object feature region to eliminate the false 

detections in the detection of transparent object. Instead of using traditional computer vision 

algorithms for object detection, one of the deep learning models, called Single Shot MultiBox 

Detector (SSD) [7], is applied to create a convolutional neural network for the detection of 

transparent objects. Although SSD gives a high performance in the detection of transparent 

objects, it shows many false detections when testing the network on non-transparent objects 

with the same shape of the transparent objects. As a result, the performance of the network 

is degraded by many false detections. Therefore, object feature region over the transparent 

objects is introduced to deal with the false detections problem of the network.  

 The transparent object feature region that we proposed in this research is based on the 

transparent property of the glass objects and we call these regions as ‘glass-feature regions’. 

These glass-feature regions are appeared on the glass objects because everything inside or 

outside can be seen through the glass body. We define at least one glass-feature regions on 

each transparent objects and include them in training the network. Then, the false predictions 

are removed by defining the regions without any glass-feature as the non-transparent objects. 

With this approach, a large number of falsely detected regions are eliminated during testing 

and the network achieves a higher accuracy performance in the detection of transparent 

objects. 

 Currently, the proposed transparent object feature region varies according to each 

kind of transparent objects and we need to define different feature regions for every kinds of 

transparent objects. In the future work, it will be better if we can find another visual property 

that is common to all kinds of transparent objects and can be included in the training 

processes. 
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