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1. Abstract

We propose combination of transparent object feature
region to SSD model for eliminating false detections from
transparent object detection.

We manually define object feature regions on each
transparent objects and train along with the glass training
data.

During testing, we eliminate false detections by removing
the glass regions which do not contain any glass-feature
region.

We do of the proposed method
and make with other four alternative training
processes.



2. Introduction

Object detection is the detection of any kind of objects existing
In our environment.
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Transparent Objects

» Transparent objects are the objects with special features.
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Fig. 1. Transparent object and its characteristics



Previous Object Detection Method
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Transparent Object Detection with CNN
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CNN : Convolutional Neural Network
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Ject Detection with CNN
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Transparent Object Detection with CNN
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Transparent Object Detection with SSD

VGG-16

Extra Feature Layers
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Transparent Object Detection with SSD

Transparent object images taken
from ImageNet ILSVRC dataset
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Problem

Detections:8732 per Class
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Solution

________________________________________________ Object Feature
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» Eliminate false detections by
excluding the detected regions
without any glass-feature region.
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3. Object Feature Region



Transparency

» The rays of light can pass through the glass medium.

Water and beer level
that can be seen
through the glass body

No transparency
through paper cup and
coffee mug body
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Transparent Object Feature Region

Transparent object feature
regions are unique to
transparent object.

» We propose these glass-
feature regions to eliminate
false detections.
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Transparent Object Feature Region

» The transparent object features are defined at different
regions of the glass.

Empty glass Glass with
glass-feature liquid [ glass-feature

region region
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4. Experimental Results



Training Dataset (For proposed method)

Num. of glass-

Object Classes object bboxes | feature bboxes
Beaker 411 541 541
Transparent Beer glass 345 379 407
Objects  Water glass 282 302 319
Wine glass 530 666 666

Total 1,568 1,888 1,933
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Network Trained with Proposed Method

class 1 : glass

Exira Feature Layers
VG615 .

[ )
=== Classfier: Conv: 3x3xi4x(Classes+4))

\
\\ ‘\ Classifier : Gonv: 3x3x(6x(Classes+4))
A\ \

|
|
|
|
} | |
| | |
[ Iy [
Inge | : :
| 10 i
| Cond 3 | | G Cond Conv: 3x3x(4x{Classest4:
} ! |5 - el )
By L I i 0 2 ;
| |
o # I\ i o
v |
\ R
= | I
Y wl __j \w \m \
11l

Gonv: 31301024 Conv: 1x1x1024 Conw: 1x13256  Conv: 128 Comv: tIxIZB  Conv: ixixi2B

74.3mAP!
59FPS |

| Detections:8732 per Class |
| MNon-Maximum Suppression ]

Conv: 33:512:52 Conv: 33420652 Conv: 3320651 Conv: Ix3x256-51 |

class 2 : glass-
b feature » Train SSD with glass and

A glass-feature

23



Final Detection Results
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Comparison Methods

Network Trained with only Glass

Network Trained with Glass and Augmented Glass Data
Network Trained with Glass and Negative Training Data
Network Trained with Glass and Non-glass



Training Dataset (For comparison methods)

Num. of object

Object Classes Num. of Images _
bounding boxes
P 500 648
Non-transparent APer eUp
Obi Coffee mug 200 230
Jects Coffee cup 200 223
Total 900 1,101
Bicycle 138 158
Car 150 168
Airplane 150 168
: . Child 85 94
Negative training
o Cat 163 168
objects Dog 150 162
Table 150 156
Chair 150 183
Clock 150 153

Total 1,286 1,410 26




Comparison Methods (1/2)

1. Network Trained with only Glass
» Train with images which contain only glass bounding
boxes
» Base line network for detecting transparent object

2. Network Trained with Glass and Augmented Glass Data

» Data augmentation increases the number of training data.

» The network can learn more training samples from
Increased data.

» Train with glass and horizontally flipped glass images



Comparison Methods (2/2)

3. Network Trained with Glass and Negative Training Data

» To decrease FP detections, we use images with false detections.

» Train with glass images and negative training images from 9
classes of common objects.

4. Network Trained with Glass and Non-glass

» To reduce false detections on non-transparent objects of the
same shape, these objects themselves are used in training.

» Train with glass images and non-glass images of the same
shape as transparent objects



Testing Dataset

Table 1. The number of ground-truth bounding boxes in each
class of testing images.

Image classes Num. of ground-truth
bounding boxes

Beaker 109

Beer glass 107

Trans.,parent Water glass 97
objects _

Wine glass 94

Total 407

Paper cup 162

Non-transparent Coffee cup 129

objects Coffee mug 116

Total 407

e




Performance Evaluation Matrices

» For performance evaluation of the detection results, we use
the following matrices to compare different training
processes.

1. True Positive (TP) and False Positive (FP)
2. Precision, Recall and F-measure
3. mean Average Precision (mAP)




TP and FP Comparison

_ Network | T FP_

Network trained with only glass 394 550
Network trained with glass and augmented training data 661
Network trained with glass and negative training samples 395 505
Network trained with glass and non-glass 175

Glass-feature th 0.0 374
Network trained with glass Glass-feature th 0.1 392 198
and glass-feature

Glass-feature th 0.2 392 164

Glass-feature th 0.3 390 143
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TP and FP Comparison

_ Network | T PP

Network trained with only glass 394 550
Network trained with glass and augmented training data 297 661

Network trained with glass and negative training samples 395 505

Network trained with glass and non-glass 397 175
Glass-feature th 0.0 397 374
Network trained with glass Glass-feature th 0.1 392 198
and glass-feature
Glass-feature th 0.2 392 164
Glass-feature th 0.3 390 143
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TP and FP Comparison

_ Network | T FP_

Network trained with only glass 394 550
Network trained with glass and augmented training data 397 661
Network trained with glass and negative training samples 395 505
Network trained with glass and non-glass @

Glass-feature th 0.0 39 74
Network trained with glass Glass-feature th 0.1 392 198
and glass-feature

Glass-feature th 0.2

Glass-feature th 0.3

Our proposed method has little lower TP

number but more FP number is reduced.
33




Precision, Recall and F-measure Comparison

Precision
TP/(TP+FP)

Recall F - measure
TP/(TP+FN) | 2/ ((1/Precision)

+ (1/Recall))

Network trained with only glass

Network trained with glass and
augmented training data

Network trained with glass and
negative training samples

Network trained with glass and
non-glass

Glass-feature
th 0.3

Network trained
with glass and
glass-feature

41.74 %

37.52%

43.90 %

69.05 %

73.17 %

96.81 % 58.33 %
97.54 % 54.19 %
97.05 % 60.45 %
95.09 % 80.00 %
95.82 % 82.98 %
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Precision, Recall and F-measure Comparison

Precision Recall F - measure
TP/(TP+FP) | TP/(TP+FN) | 2/ ((1/Precision)

+ (1/Recall))
Network trained with only glass 41.74 % 96.81 % 58.33%

Network trained with glass and

.. 37.52% 97.54 % 54.19 %
augmented training data
Netw?rk tra.m.ed with glass and 43.90 % 97.05 % 60.45 %
negative training samples
r':'g;"vgcl’:;:ra'ned L) GRS Ele 69.05 % 95.09 % 80.00 %
Network trained  Glass-feature
with glass and th 0.3 [ 73.17 % 95.82 % 82.98 % ]

glass-feature

Our proposed method achieves the highest precision
and F-measure among all comparison methods. .




MAP Comparison

Network trained with only glass 75.27 %
Network trained with glass and augmented training data 73.71 %

Network trained with glass and negative training 77 03 %
samples

Network trained with glass and non-glass 94.87

Network trained with Glass-feature th 0.3 37.60 %
glass and glass-feature

-
Our proposed method achieves a

near mAP performance to the
highest mAP result.




Discussion

Our proposed method reduces more FP detections than
other comparison methods.

Our proposed method achieves the highest precision and
F-measure along with a good recall result.

Although the network trained with glass and non-glass
shows the highest mAP result, it is very difficult to find its
non-transparent training data.

Our proposed method gives almost the same mAP result
to the highest mAP result just with a lower cost In
selecting training data.
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6. Conclusion

» \We propose transparent object feature region for
eliminating false detections.

- )
Our proposed method achieves the highest precision and

F-measure, and a near performance to the highest mAP

\resultjust with a lower cost in selecting training data. b

Future work

» Currently, the proposed transparent object feature region
varies according to each kind of transparent objects.

» The future work will be to find another visual property that

IS common to all kinds of transparent objects and includes

In the training processes. 33
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