

University of Technology (Yatanarpon Cyber City)

Eliminating False Detection of Transparent Object by Object Feature Region

Supervisor Masayuki MUKUNOKI Co-supervisors Prof. Kunihito YAMAMORI Prof. Thi Thi Zin T1703059 May Phyo Khaing

Outline

- > Abstract
- Introduction
- Object Feature Region
- Experimental Results
- Conclusion

1. Abstract

- We propose combination of transparent object feature region to SSD model for eliminating false detections from transparent object detection.
- We manually define object feature regions on each transparent objects and train along with the glass training data.
- During testing, we eliminate false detections by removing the glass regions which do not contain any glass-feature region.
- We do performance evaluation of the proposed method and make comparison with other four alternative training processes.

2. Introduction

Object detection is the detection of any kind of objects existing in our environment.

2. Introduction

Object detection is the detection of any kind of objects existing in our environment.

Transparent Objects

Transparent objects are the objects with special features.

Fig. 1. Transparent object and its characteristics

Previous Object Detection Method

Transparent Object Detection with CNN

CNN : Convolutional Neural Network

Transparent Object Detection with CNN

CNN : Convolutional Neural Network

Transparent Object Detection with CNN

CNN : Convolutional Neural Network

Transparent Object Detection with SSD

SSD : Single Shot Multibox Detector [1]

Transparent Object Detection with SSD

Problem

Problem

Solution

Solution

3. Object Feature Region

Transparency

> The rays of light can pass through the glass medium.

Water and beer level that can be seen through the glass body

No transparency - through paper cup and coffee mug body

Transparent Object Feature Region

Transparent object feature regions are **unique** to transparent object.

We propose these glassfeature regions to eliminate false detections.

Transparent Object Feature Region

> The transparent object features are defined at different regions of the glass.

4. Experimental Results

Training Dataset (For proposed method)

Object Classes		Num. of Images	Num. of object bboxes	Num. of glass- feature bboxes
	Beaker	411	541	541
Transparent	Beer glass	345	379	407
Objects	Water glass	282	302	319
	Wine glass	530	666	666
Total		1,568	1,888	1,933

Network Trained with Proposed Method

Final Detection Results

Comparison Methods

- 1. Network Trained with only Glass
- 2. Network Trained with Glass and Augmented Glass Data
- 3. Network Trained with Glass and Negative Training Data
- 4. Network Trained with Glass and Non-glass

Training Dataset (For comparison methods)

Object	Classes	Num. of Images	Num. of object bounding boxes	
Non transport	Paper cup	500	648	
Non-transparent	Coffee mug	200	230	
Objects	Coffee cup	200	223	
Tot	tal	900	1,101	
	Bicycle	138	158	
	Car	150	168	
	Airplane	150	168	
	Child	85	94	
Negative training	Cat	163	168	
objects	Dog	150	162	
	Table	150	156	
	Chair	150	183	
	Clock	150	153	
Tot	tal	1,286	1,410 ²⁶	

Comparison Methods (1/2)

- 1. Network Trained with only Glass
 - Train with images which contain only glass bounding boxes
 - > Base line network for detecting transparent object
- 2. Network Trained with Glass and Augmented Glass Data
 - > Data augmentation increases the number of training data.
 - ➤ The network can learn more training samples from increased data.
 - > Train with glass and horizontally flipped glass images

Comparison Methods (2/2)

- 3. Network Trained with Glass and Negative Training Data
- > To decrease FP detections, we use images with false detections.
- Train with glass images and negative training images from 9 classes of common objects.
- 4. Network Trained with Glass and Non-glass
- ➤ To reduce false detections on non-transparent objects of the same shape, these objects themselves are used in training.
- Train with glass images and non-glass images of the same shape as transparent objects

Testing Dataset

Table 1. The number of ground-truth bounding boxes in eachclass of testing images.

	Image classes	Num. of ground-truth bounding boxes
	Beaker	109
The second se	Beer glass	107
Transparent	Water glass	97
Objects	Wine glass	94
	Total	407
	Paper cup	162
Non-transparent objects	Coffee cup	129
	Coffee mug	116
	Total	407

Performance Evaluation Matrices

- For performance evaluation of the detection results, we use the following matrices to compare different training processes.
 - 1. True Positive (TP) and False Positive (FP)
 - 2. Precision, Recall and F-measure
 - 3. mean Average Precision (mAP)

TP and FP Comparison

Network			FP
Network trained with only glass			550
Network trained with glass and	d augmented training data (397	661
Network trained with glass and negative training samples			505
Network trained with glass and non-glass			175
	Glass-feature th 0.0	397	374
Network trained with glass and glass-feature	Glass-feature th 0.1	392	198
	Glass-feature th 0.2	392	164
	Glass-feature th 0.3	390	143

TP and FP Comparison

Network			FP
Network trained with only glass		394	550
Network trained with glass and	d augmented training data	<mark>>3</mark> 97	661
Network trained with glass and negative training samples		395	505
Network trained with glass and non-glass			175
	Glass-feature th 0.0	397	374
Network trained with glass and glass-feature	Glass-feature th 0.1	392	198
	Glass-feature th 0.2	392	164
	Glass-feature th 0.3	390	143

TP and FP Comparison

Network			FP
Network trained with only glas	SS	394	550
Network trained with glass and	d augmented training data	397	661
Network trained with glass and	d negative training samples	395	505
Network trained with glass and non-glass			175
Network trained with glass and glass-feature	Glass-feature th 0.0	397	374
	Glass-feature th 0.1	392	198
	Glass-feature th 0.2	392	164
	Glass-feature th 0.3	390	143

Our proposed method has little lower TP number but more FP number is reduced.

Precision, Recall and F-measure Comparison

Network		Precision <i>TP/(TP+FP</i>)	Recall <i>TP/(TP+FN</i>)	F - measure 2/ ((1/Precision) + (1/Recall))
Network trained w	ith only glass	41.74 %	96.81 %	58.33 %
Network trained with glass and augmented training data		37.52 %	97.54 %	54.19 %
Network trained with glass and negative training samples		43.90 %	97.05 %	60.45 %
Network trained with glass and non-glass		69.05 %	95.09 %	80.00 %
Network trained with glass and glass-feature	Glass-feature th 0.3	73.17 %	95.82 %	82.98 %

Precision, Recall and F-measure Comparison

Network		Precision <i>TP/(TP+FP</i>)	Recall <i>TP/(TP+FN</i>)	F - measure 2/ ((1/Precision) + (1/Recall))
Network trained w	ith only glass	41.74 %	96.81 %	58.33 %
Network trained with glass and augmented training data		37.52 %	97.54 %	54.19 %
Network trained with glass and negative training samples		43.90 %	97.05 %	60.45 %
Network trained with glass and non-glass		69.05 %	95.09 %	80.00 %
Network trained	Glass-feature			
with glass and	th 0.3	73.17 %	95.82 %	82.98 %
giass-leature				

Our proposed method achieves the **highest precision and F-measure** among all comparison methods.

mAP Comparison

N	mAP	
Network trained with onl	75.27 %	
Network trained with glas	ss and augmented training data	73.71 %
Network trained with glass samples	77.03 %	
Network trained with glas	94.87 %	
Network trained with glass and glass-feature	87.60 %	
	Our proposed method achiev near mAP performance to highest mAP result.	res a the

Discussion

- Our proposed method reduces more FP detections than other comparison methods.
- Our proposed method achieves the highest precision and F-measure along with a good recall result.
- Although the network trained with glass and non-glass shows the highest mAP result, it is very **difficult** to find its non-transparent training data.
- Our proposed method gives almost the same mAP result to the highest mAP result just with a lower cost in selecting training data.

6. Conclusion

 \succ We propose transparent object feature region for eliminating false detections.

Our proposed method achieves the highest precision and F-measure, and a near performance to the highest mAP result just with a lower cost in selecting training data.

Future work

- > Currently, the proposed transparent object feature region varies according to each kind of transparent objects.
- The future work will be to find another visual property that is common to all kinds of transparent objects and includes in the training processes.

Acknowledgement

- Firstly, we would like to give a special thanks to University of Miyazaki (UoM) for introducing Double Degree Program (DDP) and cooperating with our University of Technology (Yatanarpon Cyber City).
- I would like to appreciate to my supervisor Professor Masayuki Mukunoki for his kindness and guidance.
- ➢ Finally, our sincere thanks also goes to JASSO for the financial support for our education.

Thank You for Your Kind Attention !!!