3D-SRGANにおける位相不変量 を考慮した形状改善と評価

宮崎大学 工学部 情報システム工学科
 指導教員 椋木雅之
 67180340 野村淳也
 2022/02/16

ボクセル表現3次元モデルの超解像

• 3D-SRGAN[1]

敵対的学習を使用し、超解像を行う

[1] 岡和寿, "SRGANの3次元モデル超解像への拡張", 平成30年度 宮崎大学 工学研究科 情報システム工学分野修士論文, 2019

3D-SRGANの問題点

1. 誤った穴、途切れが生成される 2. 定量評価が見た目(視覚的品質)を反映していない

穴、途切れ(連結成分):位相不変量

位相不変量が異なる

- •本質的に異なる図形となる
- •視覚的品質に大きな影響を与える

位相不変量が適切なら 本質的にも視覚的にも正しい図形ができる

研究の目的

位相不変量を考慮することによる

- ・3D-SRGANの超解像結果の形状改善
- 超解像結果の評価基準改善

3D-SRGAN

- ・2次元画像の超解像を行うSRGANを3次元に拡張
- Generatorが学習用データに近いモデルを生成するために 敵対的学習を行う

Generatorの学習

- $l_G = l_{Con} + \lambda l_{Gen}$
- **l**_G: GeneratorのLoss関数 値が小さくなるように学習を進める

 l_{Con} (Content Loss) :

高解像度3次元モデルと超解像3次元モデルのボクセル毎の値(ボクセル値)の一致

l_{Gen}(Adversarial Loss): Discriminatorの識別結果

Discriminatorが学習用データと見分けがつかないように学習する

3D-SRGANの問題点

1. 誤った穴、途切れが生成される

従来のContent Loss ボクセル毎の値の一致のみを用いている

従来のContent Loss

部分のボクセル数を計算

隣接するボクセルとの繋がりを考慮していない

誤った穴や途切れが生成されやすい

変更点

表面が正しければ 誤った穴や途切れが減る していたででです。 位相不変の実現につながる

クロージング、閾値変更の追加

• クロージング

引用:https://www.mitani-visual.jp/mivlog/imageprocessing/closing968.php

• 閾値変更

小さいほどボクセル総数が多くなる

穴や途切れを減らすことができる

位相不変につながる

3D-SRGANの問題点

2. 定量評価が見た目(視覚的品質)を反映していない

従来の評価基準[2] ボクセル毎の値の一致のみを用いている 隣接するボクセルとの繋がりを考慮していない

部分のボクセル数を計算

[2]金田健太郎, "3 次元モデルの超解像における敵対学習の有効性",令和 2 年度 宮崎大学工学部 卒業論文,2020

定量評価の評価基準追加

位相不変量(穴、連結成分)を導入

1. Content Lossの改良による形状改善

2. クロージング、閾値変更による形状改善

- ModelNet10のイスのクラスの3次元モデル
 - 学習用データ :889個
 - テスト用データ:100個

低解像度3次元モデル:16×16×16 高解像度3次元モデル:64×64×64

定性評価: ○、△、×で評価 ① 3次元モデルの形状の滑らかさ(滑) ② 3次元モデルの連結成分同士の連続性(連) ③ 3次元モデルの表面の連続性(表)

定量評価:

 高解像度モデルと超解像モデルの連結成分の差(連)
 高解像度モデルと超解像モデルの穴の総数の差(穴)
 高解像度モデルと超解像モデルのボクセル毎の値が 異なるものの数(値)

実験1:実験手法

Content Lossをモデルの表面と内部を考慮するように変更し、 形状改善につながるか検証した

比較対象

- **内部のみ** : Loss関数の変更なし
- **表面のみ** : Loss 関数を変更せず、学習用データ内部を空洞にする
- **表面 + 内部**:提案手法

実験1:実験結果(モデル1)

高解像度3次元モデル

定量評価

連:1 穴:0 値:0

定性評価	定量評価					
滑:×	連:5					
連:△	穴:41					
表:×	値:2721					

内部のみ

定性評価	定量評価					
滑:× 連:△	連:4 穴: <mark>33</mark>					
表:×	値:2804					

定性評価 定量評価 滑:○ 連:0 連:○ 穴:35 表:○ 值:2418

表面+内部(提案手法)

実験1:実験結果(モデル2)

定量評価

連:1 穴:16 値:0

高解像度3次元モデル

定性評価	定量評価
滑:×	連:12
連:△	穴: 7
表:△	値:3993

内部のみ

定性評価	定量評価
骨:△	連: <mark>2</mark>
車:△	穴:7
表:○	値:3164

定性評価	定量評価
滑:○ 連:○	連: <mark>2</mark> 穴:8
表:〇	值:3093

表面のみ

表面+内部(提案手法)

実験1:実験結果(評価)

	モデル1			モデル2			テスト用モデル全体の平均		
評価項目	滑	連	表	滑	連	表	連	穴	値
表面のみ	×	\bigtriangleup	×	×	\bigtriangleup	\bigtriangleup	19.1	64.6	11230.9
内部のみ	×	\bigtriangleup	×	\bigtriangleup	\bigtriangleup	0	4.8	13.5	8447.1
表面 + 内部 (提案手法)	0	0	0	0	0	\bigcirc	2.5	8.3	6569.9

実験2:実験手法

後処理の形状改善への有効性を検証した

- ・2値化閾値変更:2値化閾値を0.5から0.3へ変更した
- ・<u>クロージング</u>

Loss関数変更 + クロージング

実験2:実験結果(モデル1)

高解像度3次元モデル

定量評価

連:1 穴:0 値:0

定性評価	定量評価
滑:○	連:1
連:○	穴: <mark>1</mark>
表:○	値:4038

クロージング

定性評価	定量評価					
滑:△	連:3					
連:△	穴:37					
表:△	値:2905					

Loss関数変更+クロージング

2值化閾值変更

実験2:実験結果(モデル2)

定量評価

連:1 穴:16 値:0

定性評価	定量評価					
滑:△	連:2					
連:△	穴:7					
表:〇	値:3363					

高解像度3次元モデル

2值化閾值変更

定性評価 定量評価 滑:○ 連:0 連:○ 穴:6 表:○ 值:4361 クロージング

定性評価	定量評価
滑:○	連:0
連:○	穴:6
表:○	値:3189

Loss関数変更+クロージング

実験2:実験結果(評価)

	モデル1			モデル2			テスト用モデル全体の平均		
評価項目	滑	連	表	滑	連	表	連	穴	值
2値化閾値変更	0	0	0	0	0	0	1.4	8.74	8290.6
クロージング	\triangle	\bigtriangleup	\bigtriangleup	\bigtriangleup	\bigtriangleup	0	4	9.38	8466.3
Loss関数変更+ クロージング	0	0	0	0	0	0	1.69	5.26	7035.5

3D-SRGANによる超解像における位相不変量の考慮

位相不変量を考慮した形状改善

- Loss関数の改良 :有効
- クロージング : 有効
- 2値化閾値の変更
 :非常に有効
- Loss関数変更+クロージング:非常に有効

位相不変量を考慮した評価基準

定量評価の基準として適している

位相不変量のLoss関数への導入